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ABSTRACT

i The problem is to search for the t largest observations in

a random sample of size n by asking binary type questions of the

people (or items) in the sample without collecting any exact data

ji whatever. The unordered and ordered cases are both considered; in

the latter case the complete ranking is of special interest. Two

different criteria of optimality are considered: (1) to minimize

the expected number of questions required and (2) to maximize the

probability of terminating the search in at most r questions for

j specified r. Optimal procedures are found and compared and in some

sense the solutions for these two criteria are close to each other.

I The analysis is nonparametric in the sense that it holds for any

Iunderlying sampling distribution but the actual optimal procedures
depend on the specified distribution.
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[ ON PARTITIONING A SAMPLE WITH BINARY-TYPE QUESTIONS
IN LIEU OF COLLECTING OBSERVATIONS*

by

Kenneth J. Arrow,** Leon Pesotchinsky,"'*
and Milton Sobel*"'

1. Introduction

This problem originated in some research on the optimal design

Sof organizations, though it clearly has many other applications. Consider

the simplest problem of resource allocation, in which there is one input

1. to be allocated among many possible users. All users produce the same

one product, and each is characterized by output-input ratio independent

of the scale of operations. Optimal resource allocation would require allo-

cating the entire input to the user with the highest output-input ratio.

Suppose there are a large number of users. In the first instance,

S.each user knows his or her own ratio only, while the center (the agent
performing the allocation) does not. The center must acquire 1he

information by asking questions of the users. However, in the spirit

; 1of information theory, the more exact the required answer the more

costly its transfer is. We can reduce the problem to that of asking

IThis work was supported in part by Office of Naval Research Grant
ONR-10011-79-C-0685 and in part by National Science Foundation Grant

- eMof78-01881. This paper started with a serie of discussions between.one of the present authors, Professor Kenneth Arrow of Stanford Univer-
sity and Professor Leonid Hurwicz of the University of Minnesota and the
original applications considered were in the field of economics. Thanks

[i are due to Professor Morris Newman of UCSB for suggesting the method of
.proof of Theorem 3.1. We also wish to thank Ms. Barbara Havens for

" carrying out some of the computations.

Department of Economics, Stanford University

Department of Mathematics, University of California at Santa Barbara
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dichotomous questions. Since the center, does not know the individual

values of the output-input ratio, it may treat them as members of a

random sample from a distribution, In this paper, we assume the distri-

bution known.

There are many other situations in which the choice of the

largest element from a sample may reasonably be made by binary-type

questions. For instance the data to be collected has a confidential

or semi-confidential nature and people may be reluctant to furnish

information about their age or salary or even about the amount of money

presently in their wallet. On the other hand, people may be willing

to state that the quantity X in question (i.e., X equals their age)

is greater than 30 and, if necessary, later tell you that it is under

4 5, etc. The problem (or goal) is to continue such questions with

* the n people (or a subset of them) in order to find the one whose

X-characteristic is the most extreme in a given direction (say, the

largest). A more general goal would be to find the t largest (smallest)

of n with or without respect to order. For the latter goal, the case

t = n - 1 (or n) would correspond to a complete ordering of the people

in the sample and this is an important special case. Clearly, the case

t = 1 reduces to the former goal.

The criterion to be used has to be specified exactly in order

to either find the optimal procedure or decide whether a given procedure

is optimal. The main criterion of interest in this paper is the expected

number of questions that has to be asked. We are also interested in



criteria such as "maximizing the probability of terminating in r

steps." For most of our goals, the latter criterion with r = 1 and

the main criterion (expection) give results that are in "close proximity"

Vi from the point of view of applications.

Several things should be notedt

(1) We are not allowing paired comparisons here; we do compare

- all x's with a single specified constant and call this

one question.

1 (2) We assume in our illustrations that the X-characteristics

of the n people, xlX 2 ,... Xn, are independent and iden-

tically distributed (lid) (or at least exchangeable) with

cdf F(x), which is known to us (the case of unknown F

* will be considered by the authors in a separate publication).

(3) We assume that the observations (x's) are continuous so

that with probability one we can assert that no two are

exactly equal. We recognize that this may not be strictly

true in the applications noted above and that practical

modifications will be necessary to handle ties (e.g., two

people may both be 45 years old and the data available to

us does not give ages finer than to the nearest year).

However, the theoretical analysis will not take this into

account; it simply uses the fact that with probability one

I. under very weak restrictions (independence being more than

iIi sufficient) no two x's will be exactly equal.



Remark: Moreover, there will usually be a practical lower

bound to the fineness of the data, say c, that encourages ties for

large sample sizes. If we expect ties in the sample we modify our

procedure by not allowing in our questions (which are of the form:

"Is your X larger than c") two constants within e of each other.

Then it is easy to show that the results we have below on expectation

are upper bounds for this new modified procedure, even if the proba-

bility of ties is not small.

Our solutions (for the case of known cdf F(x)) are strongly

dependent on the given cdf F(x) (i.e., when the true cdf F(x) is

completely specified). However, the solutions are nonparametric in

the sense that the instructions and tables needed to carry out the

procedures are the same regardless of the particular assumed F(x).

Thus our tables would specify a value of p and the procedure (at

the first step) might be to solve F(c) = p. Another equivalent way

of stating this is that the problem has been reduced to that of the

uniform (0,1) distribution.

The results obtained are quite striking. Thus in the basic

illustration (t a 1) the minimal expected number of questions required

is less than 2 1/2, namely 2.42778. The result above holds for ary

starting sample size n and for any known cdf F(x). The procedure

-I that maximizes the probability of terminating on the very next step

(the second criterion with r = 1) has a result not far removed, namely
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K the corresponding expected number of questions required is 2.4414.
The optimal procedure in the latter sense is simpler because it does

not require the use of any table of optimal p(or c)-values.

I (Of course, there could be some other ways of asking group questions,

e.g., rather than asking a binary type question leading to a yes or no

answer (such as "raise your hand if your X is larger than c and

do not raise otherwise"), we could allow questions with 3 possible

answers (such as "raise your right hand (or red flag) if X > c2 ,

I. your left hand (or blue flag) if X < cI , and no hand (flag) otherwise").

* Then with c1 < C2 we can partition the sample with one question into

at most 3 disjoint sets: X < Cl, c 1 < X < c2 , X > c 2 . In the same
V

way questions with k (> 3) possible answers may be allowed and, of
0

course, we should make every attempt to use such questions if we wish to

attain an optimal solution. (The reason for this is that for k2 > ki > 2

an optimal procedure with "k2 -way" questions generally gives better

results than an optimal procedure with "ki -way" questions.) In the

illustrations below only binary type questions are allowed; however,

the same approach could be implemented in the cases of more complicated

1. "sampling procedures" (we refer to the type of question allowed as a

part of our "sampling procedure").

I. We regard our problem as the partial or complete ordering of

1i a sample without the necessity of knowing any particular values of the

observations in the sample.

[i
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In Section 2 we consider the problem of selecting without

order the t largest of n observations in a random sample; the same

problem with ordering is discussed at the end of Section 3. The main

part of Section 3 deals with the problem of a complete ordering of the

sample.

2. Selecting Without Order the t Largest

2.1 Preliminaries

Consider the problem of selecting without order the t largest

observations in a sample (say, of people) of size n when the above

type of sampling is available to us, i.e., we can ask any subset of

the n people to each raise his hand if (and only if) his X > c,

where c is at our disposal to select. We terminate when (and only

when) we definitely have the t largest separated from all the others.

(The modifications required in the case of ties will be evident in the

light of a remark made in Section 1 above.)

It should be understood that if we obtain a subset of size k

which is less than t as a result of the first question then we continue

looking for t - k from the batch of size n - k; if k > t then we

continue looking for t from the reduced batch of size k.

Let 7i denote the probability that j people out of i

will respond affirmatively to a single question. In fact these v, -

values can in the most general set-up depend on the entire history of the

* i,
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f procedure. In other words, if {w) denotes the space of trajectories

of a random process associated with our procedure, then after v

questions have been asked (or at a moment w) ir (V) ( , s < w)

for w. = i. However, using the assumption thatw iJ 0 for J S i

it can be shown in a manner completely analogous to that given in a

book by Ross (1970, Ch. 6] that if the X's are independent (or at

least exchangeable), then the optimal solution for our principal criterion

(minimum expected number of questions) is obtained by a stationary

Markov decision procedure, i.e., with transition probabilities i.

'which do not depend on w.

As a result of the above we can use the Markovian property to

write for n > 2 the basic equation for our procedure

n t-l
(2.1) P (r)= I i ,t(r- 1) + I r -i)f nt 3t+nl t J=O n-jt-j

where P n,t(r) denotes the probability of terminating in at most r

steps under a scheme described above if we start with n and our goal

is to find the top t unordered. The boundary condition is simply that

for all t we should have Ptt(r) equal to zero for r > 1 and

1 }equal to one for r = 0. If we multiply both sides of (2.1) by r - 1

and sum from r 1 to - (letting W denote the expected number

of steps or questions required for our procedure with n and t

defined in the present goal), then we easily obtain

i



-

n-I (t) (t-j)
(t) + l n J j + nj'n-j

(2.2) i-tWi
n =n,O - in,n

A sufficient condition for the expected time of absorption

(which is equivalent to the expected number of questions needed in

our problems) to be finite and hence for the both sides of (2.2) to

be finite is that the wiJ be bounded away from zero; more precisely

that wi,t > 6 for all i and j (j< t < i < n) for some 6 > 0.

(This sufficient condition can be shown to hold for our optimal procedure.)

An alternative way to show that (t) are all finite for the case

n

of the optimal procedure is to come up with some other (i.e., any)

procedure for which the expected times of absoption are finite for all

n. In fact, it will be shown that an optimal procedure in the sense

of our second criterion with r = 1 yields finite values for all

,(t)

Un

Assuming now that the transition probabilities (i.e., the Wnj

are defined by a finite number v of parameters pl(n),... Pv(n),

and that i~s) have been found for all s<t and - 1, equation

(2.2) can be viewed as a recurrence relation from which the w

and the optimal p1 (n),...,Pv(n) can be found via minimization of

(t). That defines an optimal procedure in the sense of our basic

nI



*criterion (minimizing the expectation). For our second criterion with

r _ 2 (i.e., maximization of P n,t(r) for a specific r), we can

t treat equation (2.1) in an analogous manner assuming that the P i( )

have been found for all i < n, s < t and T < r - 1. For r = 1

the solution in the latter case is obtained simply by maximization

of the single coefficient wnt .

In the important special case where xl,... ,xn  are obtained

from continuous iid random variables, the transition probabilities

W are binomial, namely n, (n)p J( - p )n-J , where p = 1 - F(c)

n , n,j *j n n nn

and c is a value which defines the initial question for the sample* n

size n. Therefore, in this setting the optimal solution is given by

(T)
a sequence of values p ,n + 1, T < t. Naturally, since the

search for the top t unordered is equivalent to that for the bottom

n - t unordered, we can assume that n > 2t. For the second criterion

with r - I we obtain n values maximizing v =(t(l - p )  ;
Dn n,t n

it is easily shown that the sequence n = t/n is optimal in the sense
n

t t
of this criterion. We can see now that w $nt 4 t e- t! as n 4 -

and hence in the associated Markov chain the absorption time

0) < (lim ) = ttet/tt and hence *(t) = t) satisfies
Vn -n,tn

t. t
the same inequality. Thus for each t the quantity t!(e/t) is

I.

ii
... I J.
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(t)foan n;tsupebod
an upper bound on the optimal Pn for any n; this upper bound

holds both for optimality of the second criterion with r = 1 as

well as for that of the basic criterion.

Now we can use (2.2) to derive some results for the optimal

procedure with respect to the basic criterion.

2.2 The Optimal Procedure for the Basic Criterion

Theorem 2.1: Let {p(t)) be optimal in the sense of our basic
Wtn

criterion and p( denotes the corresponding expectations. Then
n

(I) %(t increases with n (for any fixed t) and

n = D

(2) t/n < p < (t + 1)/(n + 1) for t < (n + 1)/2 and

(t)
p instad of~n (o en eqinst t<ead of 1- an+ iista

of l(t) Th n 2 ta ewitna

nn

Proof: For simplicity let us first take t = and write

pisedo n (rp(t)), q instead of 1 p and 11 instead

of 11(t). Then (2.2) can be written as
n

n-i

(2.3) (np)
n l p n-qn
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[ itwhich defines an analytic function of p on (0,1), so that for

the optimal p (i.e., p = ), we have (dn(p))/dp = 0 and it

gives us

n-i

(2.14) .(n)p-lqn-l-( j - np)-P
! ,J=2 J

i n--
- n n - - p n-l + I (n)P'l-J)( - p - n )-

J=2 /)

1n- n-i n- n-in~~ - p n (p) = n(q n -  p n

Using the identity J -np nq - (n - J) in the left-hand side of

(2.4) we then rewrite (2.4) in the form

( . l(n)pj(n1j - n2 )pj n-l-J n- 1

(2-5) . J=2 i q J=2 q p

n(qn- - n-i
=n~ - Ph)n

For any p and the optimal n-I from (2.3) it is clear that

(2.6) • n1 + (n j 1)pJ q n-l-J,)(1 - 1 - -i .)

J1
Hence we obtain from (2.3), (2.5) and (2.6)

(2.7 i~(pqn-1 _n) <_tn 1 _pn _n)_ n(1_n-)I

-i.
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which yields

(2.8) 1n-i = n

Now, in the first line of (2.4) we expand n -np as two

separate terms and use (2.3) on the second sum. Equating this to the

third term in (2.4) we obtain, for any pr that satisfies (dun(p))/dp = 0,

_ nr n n-j
r I  J-1 Pr r

By virtue of (2.8) the right side of (2.9) is an increasing function

of Pr and hence by (2.9) vn(Pr ) is also, i.e., if there are two

solutions plP2 with p1 < P2  then u n(p) < n(P2 ). Since n(p)

is an analytic function in (0,1) and tends to infinity as p + 1 from

the left and also as p -* 0 from the right, there cannot be two such

p-values that are both local minima. Hence the minimum must be unique

and there is no analytical maxima in (0,1).

The next task is to locate this unique minimum. From the first

and third terms in (2.4)
n-i
2( np)pJ-lqn-l-J j - nn(pn- l p n-l)

(2.0) dp i-p - qn

dp 1 pn
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We wish to show that for every n the derivative is negative at

p 1 1/n and positive at p = 2/(n + i). Firstly, for p = 1/n we

take into account that Un(P)  U1 n j > I2 a 2 for j > 2 (the

fact that u2 = 2 can easily be derived either directly or from the

associated Markov chain). We first separate the term with J a 2

in the sum in the numerator of (2.10) and then in the remaining terms

expand j - np = j - 1 as two separate terms, thus obtaining for

n > 2 that the numerator of (2.10) for p = 1/n does not exceed

(n- )qn - 3 = n q 1 (n-iJ-1 q - qI I ()pjqnJ - qn-i + pn-1
n - J J=

= n-1)en-3l -n/2) < 0

dp 1p = 1/n <  0 .

~In the same wv that (2.9) has been derived from (2.4), we can

'j'. use (2.10) and some algebra to show that

' n(P)

W (p)

I

q Dl --i + p-1 ,mnl(p) (np1

I
!



We can see nov from (2.11) that if uin(p) Un-1 (p), then

(du'i(p))/dp > 0 and with the continuity of 'in (p) in p this

implies that W()<pi 'i(p) - Ui~ (p) 0. It now remains

only to show that the latter inequality holds for p = 2/(n + 1).

But using (2.2) and the relation v n =~ itn~ (n -k)/nq we can

show that

(2.12) (1 - n q n)(1  - - q n-1)[, (p) U ' (p)]n n-i

~pn-i ~n-i n-2 n- n- (1 - n~ n)(n k

k=2

negative if k > 3 and p =2/(n + 1). Since for k > 3 we have

'ik > 'i2 =2, the right-hand side in (2.12) is not smaller than

-pq -- qp nl+a2{(l -p n-q n- npq l)(1 p nl-q)-

pn-1- qn-l- (n - 1 )pq n-2)(i - p - q n),

=-pq- _-qp,- + 2pq n2(np-i)

and with p - 2/(n + 1) the latter expression equals pqn- - qp n1> 0.

This implies that

(2.13) < ni < 2n n n+ 1
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' !and the equality holds only for n = 2. The inequality (2.13)

enables us to take limits in (2.3) in accordance with two subse-

quences converging respectively to lim npn() and li np n(1)

(using the Poisson approximation to the binomial distribution).

The Poisson approximation and the monotonicity of u1) imply
= n(1) --. Wi

that 01 lim np npn = el = e (say). A new equation

can now be written instead of (2.3), namely

(2.14) U(i) 1 + e- 1 e l W (1 -e 1

which is more convenient for the numerical search for 8 This

completes the proof for t - 1.

For t > 1 the proof of Theorem 2.1 follows essentially in

the same manner as above and hence we will outline the result below.

Firstly, two identities can be derived from (2.2) in the same

manner as (2.4) and (2.10) are derived from (2.3), namely

4 d )p
Wn "W (~p (t)(p)](l n-i

(2.1 ) p - n{p(l - pp - qn}lw~ (I •(_P)'

+ n-i Wt (t) t-1 (t-k) .(t-k))
" P [On-i (p )  -J I ~'n-l,k(Un-k - n-k-i)

kul

and

I
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(t )(p) nn-2

(2.16) dp = n~q.l - q - pn)lkt n-l9k(Pk+l  P k

qn- (t-l)() (t-l) ] (t)(p) (t-1)(p)]t;In-i (P)- [n n( )  - 1

(1 - -1

i (t) ()

Since we have (d(t)(p))/dp = 0, we can see from

(2.15) and the fact that (t) (t) for all p thatn- = n-i

t-1 (t-k) (t-k)

k 1 n-l,k Un-k -
1n-k-1

[ (t) (t) n- n- (t) (t)

- 1 -itp)](l - - q + (t) - 1n-

I (t) (t) n-i

and under the inductional assumption that (v) > (v) for all
r r-1

n > n- Then we canI (r) -(J)

prove that the differences pkJ - (J) are increasing with J

which in turn implies that (t) (t-l) increases with a(a > 1)t+Q -t-l+01=

because (t) t-i) UCc) (a)

t - t-lQu = t+M - Pt-l+&"

For any point p in which (dn(t)(p))/dp = 0 we can write

now from (2.15) that



I[

n-i n-i

1(2.18) Wt)(P) 11 W (~(P) W 1 - Q

it-
n-1 kt)i n-k n-i-

1- q
t-I (t-k) tl

I "n-l"-k - n-l-k
.+ 1-n-1

and from (2.16) that

t) (t-i)(t() -___-i
(2.19) t (p) - (t i -n-1

.n n I n-1

+ (t-i) (tl)1 n-i n-1
Pn-l 'Un-I - n-iin-i

-i ((t) (t -1)k I k 'ffn-i ,k I'k+l - P k

i pn-i

Suppose now that a function (V)(P) decreases in the interval

(,p (v)) and increases in the interval (p rVl) and that

v/r < r (v + 1)/(r + 1) for all - S t, r < n-i and v. (i + r)/2.

iThen the right-hand side in (2.18) decreases in the interval

(O,Pn I ,  (because u n- .P) decreases by virtue of the inductional

assumption and 1 (t-k) , (t-k) decreases with k due to the statement

n-k n-l-k1.
ii
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above after (2.17)). At the same time, the right-hand side in

(2.19) increases in the interval " (t-) ,l) and with the helpPn-i

of the arguments following (2.9) we can see that there cannot be

two such p-values to the left of -(t) (t-

(to1 tergto rn-i

that are both local minima. But by virtue of the inductional

assumption

p(t-l) <t< t M-t
Pn-1 n -- 1 Pn-i

which implies that if there is a local minimum in the interval

p(tl), p(t)], then this miniaum is unique for the funtion Pn

in (0,1). From (2.15) we obtain now that

d-- W (t))
Un
d IP WP)

pn-i

=npl - -q, l n p - n1 ,
- qnl

t~lw  , (t-k) , (t-k),
-k= n nl,k ( n -k  - n-k-l1

> n{p(l-pn qn)}-l((t) - (t))( l - q-i 1 > 0
n n-l k=1 -i !



[(t) (t
so that V n (p) increases in the interval (pn l1). In a similar

1. manner we can show that

dp (t-) <0

and hence there is a unique minimum of (tp), and that it lies

in the interval (tl) (t)) then for t > 2 we can show thati inthe nteral n-i 'n-1 f

(d (t)(p))/dp is not positive in the point p of the intersection

tt • (t)

of Pn )(P ) and Pn l(p) and (djAn (p))/dp is positive in the

point p of intersection of n () and np (p), so that

Pp < p " The final step of the proof includes the direct veri-
'.1

fication of the fact that p I t/n and p S (t + l)/(n + 1) (which

we omit) and hence

(t) (t+l/n+i

(2.20) t/n <S p < (t + 1)/(n + 1)

It is easy to show that the equality in (2.20) holds only

V I if n = 2t. Indeed, if n = 2t we obtain from (2.2) (taking into

account that (t-k) - (t) that

a 2t-k = 2t-k

I
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(2.21) 1A (t (p ku t+k w2t,t+k ' 2t,t-k~

and the monotonicity of IV(tM in k implies that p -1/2 yieldst+k

the minimum for U4 (p).

The proof of the existence of

lmn(t)
Pn t t< e < t+ 1

is similar to that in the case t = 1.

2.3 Approximation to the Optimal Procedure.

The above results enable us to prove that the proximity of

tnadi(t) (t) t);heltr
t/ n n implies the same for Un and U n ;telte

refers to the second criterion discussed in Section 2.1 above.

Theorem 2.2: There exists an e 0 such that for all

n<-and t < (n+l1)/2

-(t) - (t) 
I

iin

Proof: We can write that

.(t (t)
(2.22) (t) (t)+Un n (U n n n
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where n is defined by (2.2) with optimal (U), u< t, s < n-,

and p = t/n. The first term in (2.22) is an "improvement" introduced

to the optimal procedure in the sense of the second criterion withbysbtiuig (u) (u)

by substituting Ps for the smaller values ps and the

second term is an "improvement" to (n due to the optimal choiceYn

of p.

Let us suppose now that the statement of the theorem holds

for all u < t - 1. Then we get from (2.21) (taking into account

t = 1/2 and denoting sup ((u) (u))that P2t - sI by
2t ~ 2u-l< ;s - fp ust-

Ct-l ) that

(2.3) (t) Wt "(t) _--(t )

(2t - p2t = p2t -2t

t-l

t~,(k) (k)

t+k - t+k 2tt+k 2t,t-k
k-1

2t 2t1-p -q

2t 2t

= t-I - t-i "i- - 2 t + l  "
1 - 2-tl

The inequality above serves as the basis for the induction.

If we suppose now that the statement of the theorem holds for all

u =t and s < n-I with z c then from (2.2) we can obtain

that

II



-22-

t nn

ft n

In order to estimate the second term in (2.22) we cani derive (2.16)

that in the interval (tlfl,pt

2does not depend on t and C 0< 1.

From (2.24~) and (2.25) we can see now (using the inequality

-(t) WtW
Pn P < mxn I ndP I(Pn n

n = nt

that

It C)(n)(j)t(l - )n-t C ct(l t)n-t
(2.26) n(t W t n n 0t n

n n

and

;(t) UCt)<
n n
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I. if

n tte(t)n ) I> Cot'
t n 0

or if

3/2 , n)-i t -t+l

(2.27) e > at = Co- t3e > Cnt

Since at - 0 as t the c can always be chosen to

satisfy the statement of the theorem.

The calculations presented in the Table 1 show that for

t< 7 we have et e £l < O.O14 and since c8 < 0.014 we have

El 0.01 od(.

From Theorem 2.2 and Table 1 we can see that from a practical point

; I of view the optimal procedure for the second criterion (with r = 1)

is nearly optimal in the sense of the first criterion. Clearly, the

so-called t/n-procedure is more convenient since it does not require

specific tables for determining the Pn(t1'n

I|
L !
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Table 1

Selecting Without Order the t Largest

tt n(MM )t

2 ., 2.0 2.0 0
3 .67 2.265m 2. 67 .ool6o
k .z6557 2.23783 2.21138 .003551 1 .1111 2.3625 2.a6524 .0o0899

50 .02281 2.41389 2.42676 .01287
1.14852* 2.42778 2.1144 .01366

14 .9 2.380014 2.38M9 .00091
5 .40582 2.47956 2.48U9 .00183
6 .31175 2.53757 2.54 2 .00285

2 10 .20969 2.63849 2.64418 .00569
50 .04318 2.73979 2.74998 .01019

S 2.176 2.T6250 2.M29 .0=019

*6 05 2.59"00 2.59706 o00206
7 M.18 2.66373 2.66642 .00269
8 .380M7 2.7og6i 2.715 .00534

s 10 .30683 2.76729 2.77175 .00 6
50 .06326 2.91523 2.9235 .00912
- 3.18865 2.94586 2.95512 .oog6

8 .5 2.7003 Z.7430? .00304
9 .W657 2.79158 2.7958 .0050

10 .40350 2.82890 2.83286 .00 6
4 15 .2T236 2.92477 2.9315 .oo%8

50 .08324 3.03005 3.0913 .oo863
S' 4.19669 3.06868 3.07700 .00832

10 .5 2.84750 2.85131 .00381
-1. .456m 2.8829 2.892h16 .00417
12 .1919 2.91945 2.92397 .00452

5 15 .337.8 2.98C61 2.98ol .0o40
50 .10517 3.11403 3.12240 .0083T
- 5.20228 3.15957 3.i6726 .o769

2 .5 2.93189 2.93634 .00"5
" .A623 2.96538 2.9701 .00473
14 .40348 2.99198 2.99w .00499

6 20 .30388 3.08103 3.874 6 .o623
90 .22307 3.17819 3.18614 .00822
- 6.2649 3,23100 3.23823 .00723

2h1 .9 3.0083 3.00579 .001496
23 .16751 3.02909 3.03427 :00328
to .35294 3. 113m 3.12003 .oo6

7 30 .23691 3.18262 3.189 .o722
90 .14295 3.22936 3.23751 .00815

* 7.20982 3.28944 3.29631 .00687

F r a the mtry in the a( )  bolmi reste U1 n(t).434
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3. The Complete Ordering of a Sample

Let us denote by Gn  the expected number of required steps.

*(t) w a rt
Then in the same manner as above forwe can writeI;

n-I
1 + (n)pr qn-r (G + G ),nr n r Gn r

(3.1) G (p) = r rrn n n
1-p -q

In order to agree on one definite procedure (out of many equivalent

procedures) after the first question has been asked, it is understood

that we shall first order the r subjects in one of the two subgroups

i formed and then order the remaining n - r subjects. Thus the

minimization of (3.1) will provide the optimal results in the sense

of expectation.

We can show algebraically that for n < 5 the optimal value

of Pn is 1/2. For many values of n 6 it is no longer true;

however, the procedure with Pn w 1/2 for all n serves in this case

as an approximation to the optimal procedure, Just like the "tin-

procedure" from Section 2 does in the case of selecting without

order the t largest. Unlike the previous problem we have not obtained

exact analytic results on the limiting approach of the "1/2-procedure"

to the optimal procedure, but we do have considerable empirical infor-

Imation about this which we will describe later. What we do have is an

explicit upper bound for n _ 6 for the optimal procedure which is

IM
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based on the 1/2-procedure. Furthermore, the numerical results

in Table 2 indicate that the difference between the G -results fornu

p = 1/2 (denoted by Gn) and the optimal G -value is extremely
n n

small.

Theorem 3.1: For the 1/2-procedure we have the exact result

(3.2) G = (-)r()(r - )(i- - 1 + an r=2 r fl

where 0O<c& :S 1 2  (n =2,3.)

Proof: From (3.1) with p = 1/2 we have I
n-n (n +n

(3-3) 2nG = 2 + 2 r )Gr - 2(G0  1)

r_0'1 rL

where we define Go = G1 = 1 in order for (3.3) to hold for n 0, 1.

Multiplying through by zn/nI, we let II

Y(z)= an-n

n0O

and obtain

(3.4) y(2z) ue 2z + 2y(z)ez  2 n- + -

Se2z + 2y(z)ez 2(+1)ez
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Table 2

Complete Ordering

a Otxl OlMMI -v ce.&w Asyaptotic Ufmt.

a .500 2.000M 2.00=00 1.8859 -. 6
3 .500 3.33333 3.3335 3.32808
?4 .50000 1.76190 2.76190 11.7T078 .08

o 5000 6.209M2 6.2M952 6.2147 .oos
6 51" 7.6650 7.6653 7.6%17 -. 0005

7 .62306 9.09874 9.10046 9.0987 .000.3
o.63k62 30.%-M9 1.5268 10.5160

10 .5000 23 .429 2.M660 1.26 .0008
11 .50000 211.8683. 111.86909 111.66 .0015
22 .30000 26.31*33 26.3338 26-3 1 .00181
23 .50000 17-7532 17.7581 17.75503 .0091L
2) .50000 29.29579 19.19775 29.19773 .0o091.
5 0 20.637 2o.610 20.64M2 o0095

22.086o n.0611 22.068u .00204
17 .6zab 23.52360 23.5a690 23.525o .00222
IS .63060 A1.966n 21.96873 21.96851 .002110
19 A18 36.h61 26.125 z6.1112 .002620 .65s50 27.85220 27.8539 27.83390 .00270
21 .661811 29.29377 29.2%651 29.29659 .00282
22 .67032 3o.73636 30.73911 30.75930 .0021)23 .63132.179k1 32.23179 52.18199 .00305

k .000 33.63)8 33.62U7 33.6268 .00520
.000 35.c610 33.06719 35.o6738 .00536

36 5000 36.50657 a6.599 36.51007 .00350
S ."M00 37.9922 3T.95266 37.952T6 .o564

28 .50000 39.39269 ::39%2 39.393W .0077
.50000 10.83125 .817 .o0.83f81 *0090

30 .0000 112.2682 112.28M9 112.2808 .004M0
31 .50000 13.71959 .372366 .3.72355 .01.6
32 .5.79 k5,26396 145.16"9 145.26625 .0 9
33 .58s 46.61"52 %6.609n 46.606o .00442
311 .57918.1788.05181 18.05263 .0015
35 .9W3 19. % h1.11o 49.494= .0069

1.6 .67196 65.3YM8 6,.: 1-- 65.36w"7 .006171 17 .6781.9 * 66.80036 " 0 50 66J0M6 .006n0
118 MW69 68.24M29 68.21.929 68.01936 .06kh1

Ii 49696 69.69218 69.69aQ6 .0067

I0

i*
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Table 2

Complete Ordering (Continued)

a Optiml OptIMI jpo.lw Asymptotic Diffe.mce

6o .50000 85.55365 83.%6177 85.%6170 .0080
6Q .50000 a6.99621 87-001A9 87.00".10 .00819
62 .50000 88.1.3877 88.".1721 86.11W09 .0032
63 .50000 89.8813 89.8899 89.8897 .oo81.s
61. .55M7 91.32390 91.3326 91.352.9 .00859
65 .571.81 92.76610 92.77535 92.7751 .00072

76 .61995 108.631062 108.6M".9 108.6.1.8 .02M1
77 :629o1 31.07728 110.0"72 310.08751 .25
78 .687 111.5191. 11.53029 1.153= .0U017
79 .61.6T2 11296231 in2.9M 212.97291 .01060
80 .6sa6i 111.1.oh8T 1A1.1561 ii1.k1.15 .01(011
8t o65673 W1.84.743 135.583 111.85ft0 .01"87
82 o659"1 W1.2"99 117.009 17.3010 .0=10

83 ."61.6 118.325 118.7105 138.71.8 .0132

90 .67282 wIt Mooftw
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-2zI. Multiplying (3.14) by e" , we let

F(z) e-Zy(z) = z
n=On

and obtain

(3.5) F(2z) = 2F(z) + 1 - 2(z + 1)e-z

( n (2zn iA z n  
_ ,n

-(36) . 2 +2 (-)1+ (n-)n
a n=0 n-0

Equating coefficients, we obtain for n > 2

(3.T) A = (_l)n(n - 1)I'2 n-i

where A0  and A, will be found later.. Hence it follows that

(3.8) y(z) = 0  B I nin0 1ruz (n )AB i z al 0a ! nl-n  ! r r "

j Using (3.7) and the definition of y(z), we obtain

n

(3-9)(n) .G

From (3.9) for n - 0 and 1 we find that Go A0  1 and

(3.10) o - A +lAl - 1+A AI 1 - 0

c . . I IIl II _ _ I l I I I
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Hence we obtain the final result from (3.7), (3.9) and (3.10)

- n
-- (3.11) G 1I+ ~ 1  r r-1

r--2 2 -

n
x _.1)r(n) r-

r=2 r1 -~

(In (3.11) we used the identity

nn

r n -

r--2 r +

r-n2 1 -2 S=O1~. I -

= n) (-i)( n-2 [ 1 8+1 1 2s+2+

=(n _ 1)1j"- + i.) + (~

2=2 M

if we set G, I1 then (3.12) also holds for n -2.

From (3.12), using the definition G= 1, we obtain
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&wl2 * 1n2 2

Letting 0 1 - (1/2 ) and i- 1, e can vrite this

I. for n _2 as

O 2 inO -  =0 _1 0

We now use the Euler-MacLaurin sum formula for (3.14). For the anal-

ogous integral I, using x for a and letting y = 1 (1/2 )x" so

that dx -dy/[Ui - y)An2], we obtain

,uJ x[, _)n i-
(3.15) 1 - 1 - n(I - - }dx

1 1 +0 2 .. 2z- nx n
2 n-+ Y + " + (n-1 n y

The two correction terms for the Euler-MacLaurin sun formula yield

1/2 and 0; using the same analysis as in (3.15) it is easy to show

that the remainder term is bounded by 1/2. Hence the asymptotic

Sresult for is

1(3.6) - 1 ..4+4269n-- 1
n In2

'I

LiTetocreto em o h ue-a~ui u oml il

'i 1iad0 sn h s: nlssa n(.1) ses oso
I; httermidrtr sbuddb /.Hneteaypoi
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where the adjusted constant is based on empirical results. (For

n = 50 this gives 71.1345 and the exact result for G50 is 71.1342,

an error of less than 1/200 of 1%. The optimal result for n = 50

is 71.1280, an error in Gn  of about 1/100 of 1%.)

In this problem the best we can do is to point out that we

need a minimum of at least n - 1 questions to separate all the n

observations and (3.16) shows that for "1/2-procedure" on the average

we need only about 44% more than this minimum.

It should be mentioned here that from a computational point of

view the search for the optimal solution in our last setting represents

a significant problem. The problem is that G as a function of nn

is so closely approximated by a linear function of n, and that for

the fixed n, Gn(p) is almost constant so that the search for p

nn
which yields the minimum to Gn(p) is quite difficult. Thus, for

n > 10 the variation of p in the interval [.5,.7] does not change

the first two decimals in Gn(P). However, the difference

n(n2) - 
- 1 - Gn (which show up in the 3 decimal) tend to grow very

slowly with n so that the correction term, namely the constant 1

in Gn -n(tn2) - 
- 1, should actually be larger than one, say of the

form 1 + 0n where B is a very slowly increasing function of n.

From Table 2 we empirically observe a cyclic pattern for the optimal

p-value which ought to be described. The optimal p-value is always a
between .5 and a constant that appears to be close to Ln2 * .693...
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J For 2 <= n <= 5 the optimal p is .5; for 6 < n < 9 It increases;

for 10 < n 1 15 it is again .5; for 16 < n < 23 it increases; for

24 n < 31 it is again .5; for 32 < n < 48 it increases; for

4 49 n < 63 it is again .5 and it increases for n > 64. For

large r we conjecture that the optimal p will be 1/2 for

3 • 2r-2 n < 2 r -1 and that it will increase between 1/2 and

r r-l
some constant close to An2 for 2r  n < 3 • 2 and that it will

follow this type of cyclic pattern indefinitely. Furthermore, we

conjecture that the small variation in the optimal G as p variesn

from .5 to .7 will persist for large values of n, so that the

1/2-procedure will always give an answer which is equal to the optimal

G -value to 2 or 3 decimal places.n

It is interesting to mention here that the natural generalization

for the problem of complete ordering of the second optimality criterion

from the selection problem (namely, maximizing the probability of a

complete ordering in n - 1 steps) leads for n > 2 to the equation

n-l n-2
(3.17) () lwnkPkPn-k= k2nkPkPn-k + (nl + Wn,n-l)Pn-I

where P denotes the probability of the complete ordering of a sample
k

of size k in k - 1 steps and the vnk are binomial probabilities:

'I
it|
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n k n-kl )nk = )k)p(i - For n s 6 the optimal p (which yields

the maximum for P n(p)) is 1/2; in the same way as above we can

consider a "1/2-procedure" and denote by P the correspondingn

probabilities and by Pn the maximal values over p of Pn(p).

It is easy to show that (3.17) implies for n 2 2 the inequalities

(3.18) 1(2)n-2 < P' < p < 1 3)n-2(3.18)N- 2 <3 = P [

For the problem of the selection of the t largest with

ordering out of n, we can easily write the equation for the

expectation of the number of questions:

it ( -) n-i

1 + I wnk(Gk + G' t - k ) ) + I w (t)
(3.19) G(t)(P) k=l n-k k t+l nk
(1n 1 1-pn _qn

where Gk  denotes the minimal expectation for the problem of

complete ordering, G( t ) f min G(t)(p), and wnk are binomialk p n ,,adaebnml

probabilities as before.

It is easy to see that

(3.20) G < G(t) < G +  W

where the right-hand side corresponds to the expected total number

of steps in the procedure "U/G" in which we first select the t

largest and then order them. Since G is of order t and (t)
t 

n
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is of the order /E or less, with large values of t the optimal

procedure for this problem of selection with ordering does not

give the qualitative improvement over the procedure "P/G"

described above. However, our conjecture is that the optimal

value of p(t) for the selection with ordering is between t/2n-n

Iand t/n and that there exists a constant v such that

(t)-G = vfor all n and t.
n

Ii
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